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Abstract —Radiation properties of open microstrip discontinu-

ities are investigated using a full-wave iutegral equation tech-
nique. The method of moments provides the current distribution

over the discontinuity which is used to determine radiation 10SS.

The radiation 10SS for microstrip bends and stubs is separated
into the individual contributions of space and surface wave

excitation. Patterns depictiug the power propagating in the
substrate have been computed and verified experimentally.

I. INTRODUCTION

E XTENSIVE literature has appeared in recent years

on the modeling of microstrip discontinuities. At

present, models based on static microstrip characteristics

(quasi-static models) [11-[51, disperskm malek [61-[91,

and semiempirical results [10] are utilized extensively in

commercially available CAD packages. Although ade-

quate at lower frequencies, these models neglect high-

frequency electromagnetic interactions and, as a result,

may provide inaccurate and even misleading results at

submillimeter-wave frequencies. In contrast, full electro-

magnetic or full-wave techniques [11]–[18] have demon-

strated excellent performance in this frequency range

owing to the inherent inclusion of these effects. In partic-

ular, radiation loss attributed to the excitation of space

and surface wave modes has been reported for the open

microstrip elements [19], [20] often found in the feeding

structures of planar arrays.

In previous work, open microstrip structures were ana-

lyzed with the method of moments. Circuit elements were

characterized by their network parameters which included

total radiation loss. No effort was made to separate this

loss into the individual contributions of space and surface

waves. Space waves refer to the modes radiated into the

semi-infinite region above the dielectric; surface waves

are modes bound in the substrate, which forms a grounded

dielectric waveguide. In this paper, more specific informa-

tion about the types and quantity of radiation occurring is

presented. These results will provide guidelines for the

development of low-loss microstrip elements. For exam-

ple, it is well known that the shape of discontinuities can
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be altered to improve circuit performance (e.g. mitered

bend, radial stub). However, finding the influence of

these and similar modifications on the radiation loss is

also important. The technique presented is capable of

providing the necessa~ quantitative results for determin-

ing if and why a specific circuit modification decreases

radiation loss.
Results will be presented that quantify the radiation

occurring from each mechanism and illustrate the direc-

tions of propagation of surface wave radiation. These

far-field patterns are useful in determining where cou-

pling through surface wave excitation may be strong. In

addition, results will be shown demonstrating the strong

influence that substrate composition has on radiation

properties.

The far-field patterns are obtained in this paper by the

complex transformation of the space-domain Green’s

function to the steepest descent plane, where a saddle

point integration is performed. The contribution from the

saddle point represents far-field spherical wave power in

the half-space above the dielectric. In addition, residues

corresponding to the poles captured in the contour defor-

mation represent cylindrical surface waves. Theoretical

and experimental results are presented for microstrip

stubs and bends that detail the effect of radiation on

circuit performance, quantify the types of radiation which

are occurring, and show the direction and intensity of

surface wave propagation in the substrate.

11. THEORY

A. Computation of Current Distribution

A cross section of the microstrip structure is shown in

Fig. 1. The conductors are Iossless and their thickness is

much smaller than a wavelength. The Iossless substrate
has thickness h. The electric field maybe written in terms

of the space domain integral equation

E(x,y,z)=@j+vv]

“Lqx,y,z/x’, y’,z’)J(s’)ds’, i=O,l (1)

with k. and k ~ being the wavenumbers in free space and

the dielectric regions, respectively, and

J(s’) = JX(x’, y’).t + J,(.x’, y’)j (2)
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Fig. 1. Openmicrostrip geometry.

is the current on the conducting strips. The components

of the dyadic Green’s function

i7(X, Y,Z/X’, Y’,Z’)= GxxM+Gzx2t +Gyyjf+Gzy20

(3)

are represented in the form of Sommerfeld integrals [21],

and are given to Appendix I.

The microstrip discontinuity is subdivided into rectan-

gles, and the method of moments [22] is applied with

rooftop basis functions [23]. These basis functions are

consistent with the current boundary conditions, having

piecewise-sinusoidal variation in the longitudinal direc-

tion and constant variation in the transverse direction.

With the application of Galerkin’s method, the integral

equation is reduced to a matrix equation

[Z][I]=[V]

where Z represents the impedance matrix, 1 is the vector

of unknown x and y current amplitudes, and V is the

excitation vector which reflects the position of the source.

The matrix equation is solved providing the current am-

plitudes on the discontinuity and the feeding lines. The

microstrip structure is excited by infinitesimal gap genera-

tors. More details on the excitation and application of the

method of moments may be obtained in [18].

B. Far-Field Radiation

The electromagnetic fields generated by the current on

the microstrip element may be computed directly from

the electric field integral equation after the microstrip

current is known. This is done by a numerical integration

of (1) after the current summations have been inserted.

Performing this integration for the radiated fields at all

spatial angles would be extremely time consuming but

fortunately is not necessary. To quantify the space and

surface wave power losses, it is necessary only to obtain

the far-field patterns. These may be obtained by an ap-

proximate saddle point integration, which is much less

time consuming than a full numerical integration of (0.

Of course, to compute the near fields a numerical integra-

tion would be required. In this section, the saddle point

evaluation for the far fields is presented. As shown in Fig.

2(a), the original path of integration was along the posi-

tive real axis. Along this path, a finite number of singular-

ities corresponding to excited surface waves are encoun-

tered between the free space (kO) and the dielectric (k)
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Fig. 2. Integration paths: (a) integration along real axis in A plane;
(b) contour of integration in the a plane.

wavenumbers. To obtain the radiated far fields, the inte-

gral is transformed to the steepest descent plane by the

complex mapping

A=kosina. (4)

Fig. 2(b) shows the new path of integration in the a

plane. The quantities shown in parentheses correspond to

the points mapped from the A plane to the a plane. The

poles now lie along the line defined by Re(cx) = 7r\2,

between the points Ire(a) = O and Im (~)= ~~. The point

v~ is mapped from the point k in the A plane and has the

value

Vk = cosh-l (e,). (5)

Consistent with the far-field approximation, asymptotic

approximations are made for the Hankel functions as

shown in Appendix II. The contour of integration (Fig.

2(b)) is then deformed into the steepest descent path [2,4],

[261. A saddle point integration is performed, with the

saddle point equal to the spherical observation angle

(a= 0). During the contour deformation, a finite number

of simple pole singularities are captured as shown. These
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represent power in the excited surface wave modes and

will be discussed in the following section. However, it

should be noted that at the cutoff of higher order surface

wave modes the pole locations are in close proximity to

the saddle point when the observation angle is along the

substrate (0 = T \2). Consequently, a saddle point analy-

sis in proximity to a simple pole singularity should be

performed near cutoff frequencies of higher order modes.

As the operating frequency moves away from cutoff, the

surface wave pole moves away from the saddle point.

To obtain the fields for a microstrip discontinuity, one

returns to the electric field integral equation. In the far

field, the electric field can be written in spherical coordi-

with

nates as

Ee=k:[~:+ m:]

E+=k; [m$+n$]

T; = J/[ G1xcos(0)cos(@) – GzXsin(6)]
s’

‘Jx(x’, y’)dx’dy’

T: =
/1 [

GYYCOS(0) sin(~) - GzYsin(f3)]
s<

“Jy(.x’, y’)dx’dy’

~; =
Jf [ – GXXsin(@)] .lX(x’, y’) dx’dy’

s’

~; =
!1 [ Gyycos(4)] Jy(x’, Y’)&’dy’”

s’

(6)

(7)

(8)

Inserting the results of the saddle point analysis (Ap-

pendix II) and the values of the microstrip current ob-

tained from the method of moments, the electric field can

be written in the form

j~wokze
(–Jk#)

EO=— —
277 0 koR

“[F(8) jG(o)(l–~,) .

f,(d>h)
Cos(o) +

fl(~’~)f2(e>h) ‘ln(~) 1
[A, X(8,#)cos(@)+A, y(O,@)s in(o)]

j~~okze (-J~o~) ~(~)

E@=–— —
277 0 koR–fl(O, h)

[A, X(6,@)sin(@)-A,Y(6,@ )cos(0)]

where the terms A,X(O, +) and AYY(O, ~) contain the

spatial integrations of the basis functions with the Green

function’s phase terms. These integrations are performed

analytically and result in the expressions given below:

= 4e(J~0(~/2)sin(@)s1n(4))

.(sin ko~ sin(d) sin(~)
)

kosin(fl)sin(~)

cos(lko sin(~) cos(~))–cos(k,l)

[()

2

1

(9)

k~sin(k.1) 1– ~ sin2 (0) cos2 (+)
s

.(sin ko~sin(d)cos(~)
)

kosin(0)cos(@)

cos(lko sin(f3) sin(~) )-cos(k,l)

[()

2

1

(lo)

k,sin(k,l) 1– ~ sin2((3)sin2(@)
s

where the quantities 1 and k. represent the subsection

length and scaling constant for the basis functions, re-

spectively. More detailed information on the rooftop basis

functions is available in [18]. The fields depend on two

factors: a substrate contribution, resulting from the

Green’s function and containing all the information about

the substrate; and a shaping contribution, resulting from

the spatial dependence of the source and containing all

the information about the shape and current distribution

over the conducting strips. Consequently, these two fac-

tors may be handled independently to reduce loss.

The total far-field space wave power is obtained by

integrating the Poynting vector over a hemisphere cen-

tered around the discontinuity:

1 LIT 77/2 IEJ2

J- J-[ 11E412~~fjn(e)d(11)psP = –
—+—

200?7. 770

C. Surface Waves

During the contour deformation of the previous sec-

tion, a finite number of singularities were captured, as

shown in Fig. 2. These singularities correspond to excited

surface wave modes that fall into two types: transverse
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electric (TEZ) and transverse magnetic (TM,) to the 0.50 f I 1 I I
dielectric-air interface. The poles are determined by the

zeros of two analytic functions present in the denomina- 0.40

n}

— pr5.
tor of the Green’s function given by equations (A12) and

(A13).

........ p,>m

4
It is now a simple matter to obtain field patterns in the .2

0,30 ------ p,~m

dielectric (0= ~/2) by the application of Cauchy’s residue ~

,,,

theorem. The total number of poles is determined by the ~

operating frequency and the substrate parameters. The

0.20
- w;—, ,........’..

..”

pole locations are given by 0.10 -
,,, ,.~,,, ---,., ----
------

1 1 I
aT~ = ;+jvn, n=l, NTM (12) ~.~() ~::=:.:’.=, .. ..=.=-<.::::::: ---

10. 14. 18. 22. 26. 30. 34.
T

a~~ = — + jv,~,
2

m=l,N~~ (13) Frequency(GHz)

where N~~ and N~~ are the number of excited TM and

TE modes, respectively. The far fields are determined by

computing the residues of the singularities and are given

in Appendix III.

The power in a particular mode is found from the

Poynting vector. The surface wave power at the dielectric

interface (Z =. O) is given by

. [e,- cosh2 (v.)] cOsh2 (vn) sinh2 (v.)

l[f:(a)lT/2+,v.]12

“sin2 [koh~~]

lcos(+)A,.K(+) +sin(@)A.}(+)12 (14)

for TM waves and by

‘T’ k~tipo cosh2 (vn) sinh2 (v~)

“’(4) = ~:. W l[f;(a)17T/’+J~m112

“sinz [koh~~, –cosh2 (vn) ]

Fig. 3. Radiation loss of open-end stub (c, = 12, h = 0.635 mm, W =
().254 ~m)

mentioned, the surface wave patterns are useful for deter-

mining directions of strong coupling between adjacent

discontinuities. Space wave far-field patterns have a null

along the dielectric substrate, except under rare circum-

stances (at the cutoff of higher order surface wave modes)

which are not applicable to the presented results. Fur-

thermore, surface wave radiation is in the form of cylin-

drical waves which decay less rapidly with distance than

spherical space waves. It is therefore reasonable to con-

clude that surface waves play a major role in undesirable

electromagnetic interference. In addition, the extraction

of the exact amount of both types of radiation will help in

the design of low-loss elements and extend the use of

microstrip circuitry farther into the millimeter-wave re-

gion. The first of the following sections will give examples

of total surface and space wave losses; the second section

includes examples which depict the direction of surface

wave propagation.

A. Space and Surface Waoe Radiation Losses

lsin(@)A,X(@) +COS(0)A,Y(@)12 (15) 1) Stubs: In Fig. 3, the contribution of space and sur-

fer TE waves. In (14) and (15) the terms A,X(@) and
face waves to total radiation loss is given for an open-

A,Y(@) are given by (9) and (10), with the quantity
ended stub. In the lower frequency range, the space wave

kO cosh(v.) replacing kO sin(~).
contribution is slightly larger. However, the surface wave

The total power in the TM and TE modes may be
loss increases sharply with frequency, overtaking the space

found by integrating the Poynting vector over a cylindrical
wave power at 19.5 GHz. Beyond this frequency, the total

surface centered at the discontinuity
radiation loss increases sharply owing to a corresponding

increase in surface wave loss. The TEO mode activates

//

~’”=_ “ 2“Ez” H$pd~dz between 35 and 36 GHz, therefore, only one surface wave

2
(16)

–h O
mode is excited in this example. The total radiation loss

approaches half of the input power at 34 GHz, which is a

//
P’E = “ 2T=pd+dz.

2
(17) significant amount of loss for an element on a substrate

–h O with practical electrical dimensions for (M)MIC applica-
tions.

111. RESULTS The radial stub k generally utilized for its greater

In this section, examples will be presented that quantify bandwidth. Radiation loss for such a structure is shown in

the radiation loss for microstrip open-end, radial stub, Fig. 4, and exhibits behavior similar to that of the open-

and bend discontinuities. Additionally, surface wave far- ended stub, except that the sharp increase in surface wave

field patterns will be shown for these structures. As and total radiated power is shifted upward. This behavior
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Fig. 4. Radiation loss of radial stub (c, = 12, h = 0.635 mm, W =
0.254 mm, ~ = 90°, r = 0.889 mm).
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Fig. 5. Percentage of surface wave loss (1’,., = P,w + P,P) from open-

ended and radial stubs (e, = 12, It= 0.635 mm, W = 0.254 mm).

results in less radiation loss in the 20–30 GHz range of

operation. In both of the above examples, the radiation

loss will continue to increase until the first higher order

mode is excited, and then it will oscillate as reported in

[25]. Although the shape of the metallization has a strong

influence on the total loss, it does not appear to have a

greater influence on either of the two types of lower

frequencies, as shown in Fig. 5. However, above 30 GHz

the radial stub radiates a higher percentage of power into
the excited surface wave mode.

2) Mitered Bend: Chamfering of microstrip bends is a

common practice for the reduction of input VSWR. The

example shown in Fig. 6 clearly illustrates that mitering

can result in lower radiation loss as well. The losses

between the mitred and right-angle bend are effectively

equal until 20 GHz (h= O.127Ag). Beyond this frequency,

the right-angle bend clearly radiates more power. Fig. 6

also shows that, once again, the radiation is dominated by

surface waves at high frequencies. However, the mitering

produces a reduction in both space and surface wave

power as illustrated in Fig. 7, where both the mitered and

0.25 1 r I 1 I r 1 1 I

0.23 - — ,,
Pm#n (miter) ,,

0.20 -
,,

-------- P,JPn (miter) .,

0.17 -
,’

.’
------ PJP~ (maer) .’

0.15 - .’
. . . . . . Pm#m (right-angle) ,’

0.12 - ,’

0.10 - ,’
?<

0.08 -

0.05 -

0.03 w
/.- ------ =.=-------------- —----... ... ... --

O.OQ~‘“--”-;-----r t I 1 $ 1 , 1
12. 14. 16. 17, 19. 21. 23. 25. 26. 28. 30,

Frequency (GHz)

Fig. 6. Radiation loss of mitered bend (E,= 12. h = 0.635 mm, W =

0.381 mm).
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Fig. 7. Percentage of’ surface wave loss (P,ot = P,w + P,P) from mitered

and right-angle bends (e, = 12, h = 0.635 mm, W = 0.381 mm).

unmitered cases exhibit identical percentages of surface

wave loss. Mitering effectively increases the useful range

of operation of the bend element by decreasing the radia-

tion loss. A similar discontinuity printed on a substrate of

lower permittivity would exhibit lower, but still significant,
surface wave losses.

B. Surface Wave Patterns

The preceding analysis was utilized to obtain patterns

in the substrate for the TMO surface wave mode. As

previously mentioned, this mode is excited at any operat-

ing frequency. Accordingly, it is important to know its

direction and the amount of power propagating. Theoreti-

cal and experimental patterns were obtained at 10 GHz

for microstrip stub and bend discontinuities printed on a

96 mil (2.44 mm) Duroid (e, = 2.3) substrate. The Duroid
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Fig. 8. Microstrip radial stub printed on Duroid substrate (c, = 2.3,

!-r= 2.44 mm, W= 2.54 mm).

Fig. 9. Experimental setup for surface wave pattern measurements

(e, = 2.3, h = 2.44 mm, W= 2.54 mm).

substrates were machined into 5-in. -diameter circular sec-

tions, shown in Fig. 8, with the substrate edges gradually

tapered to minimize the reflection of the surface wave at

the edge of the substrate. The microstrip element, in this

case a radial stub, was etched from the copper metalliza-

tion on the top face of the substrate. The experimental

setup is shown in Fig. 9. The substrates were elevated

onto a rotating pedestal and surrounded by absorber to

minimize multiple reflections. Each element was fed at

the edge of the substrate with a 10 GHz signal and a

resonant dipole was positioned near the edge to measure

the pattern. The distance from the launcher to the discon-

tinuity is 50 mm. The pedestal was then rotated to alter

the observation angle (~). Absorber was placed over the

microstrip launcher to minimize extraneous radiation. A

similar technique was employed to measure surface wave

fields of coplanar waveguide discontinuities in [281.
1) Open-Ended and Radial Stub: The experimental re-

sults for a 100 0 (W= 2.54 mm) open-ended line were

compared with the theoretical results derived by the pre-

viously presented method. Fig 10 shows that the theoreti-

cal results agree well with the experimental results. The

open-ended line radiates power in the TMO surface wave

-90.-72.-54.-36.-18, O. 18. 36. 54. 72. 90.

Angle ($)

Fig. 10. Surface wave pattern of open-ended line (6, = 2.3, h =
2.44 mm, W = 2.54 mm).
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b
3 0.3 -

E 0.2 - ,..”

-90.-72.-54.-36.-18. O. 18. 36. 54. 72. 90.

Angle (Q)

Fig. 11. Surface wave pattern of radial stub (e, = 2.3, h = 2.44 mm,

W= 2.54 mm, r = 10.16 mm, ~ = 900).

along the longitudinal axis of the line. The experimental

and theoretical results include the effect of finite feed

line length, as demonstrated by the side lobes in the

pattern.

The TMO surface wave pattern of the previously shown

radial stub was also measured. The 10.16 mm radial

portion swept out an angle of 9@ and was fed by a 100I 0

microstrip line. As mentioned, radial stubs are useful as

broader band elements in (M)MIC design. Fig. 11 shows

the excellent agreement between theoretical and experi-

mental results. The results are very similar to those ob-

tained for the open-ended line, with the surface wave

power excited along the longitudinal axis. However, de-

spite having a larger aperture, the radial stub has a wider

beam width than the, open-ended line. This occurs “be-

cause a quadratic phase is present along the apertulre,

which also results in the filling of the nulls shown by both

the theory and experiment.

The theoretical pattern of a radial stub which is fed by

a semi-infinite length of feed line is also shown. As can be

seen, the side lobes are no longer present and the beam

width was widened.

2) Bend Discontinuity: A two-port right-angle bend dis-

continuity, shown in Fig. 12, was fabricated and mea-
sured. Experimentally, port 2 was left open ended at 50

mm ( ==2A o) from the bend discontinuity. The theoretical

model assumed a semi-infinite feed line (shown as direc-

tion @= O in picture), and assumed that the second port

was left open ended but extended far from the discontinu-

ity. This extension maintains the standing wave ratio on
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Fig. 12. Surface wave pattern of right-angle bend (c, = 2.3, It=
2.44mm, ~ = 2.54mm).

the line but removes the radiation from the open, thereby

isolating the radiation pattern of the bend. As shown in

Fig. 12, the agreement between theory and experiment is

good. The experimental results show the combined effects

of finite feed line length and the radiation from the open

end. This results in the discrepancy between the theory

and experiment around 45°. Since the experiment was

designed to measure the bend pattern, the open-end

discontinuity was positioned at the edge of the substrate

in the experimental model to minimize its effects, and

could not be accurately incorporated into the theoretical

computation. The side lobe present at about 9CP in both

the theoretical and experimental results comes from the

power reflected at the open end which returns to the

bend and radiates there. This lobe would be smaller if the

second port were matched.

IV. CONCLUSION

Formulas have been presented to characterize power

loss from open microstrip discontinuities. The technique

utilizes microstrip current distributions obtained with the

method of moments. The formulas allow the separation of

total loss into the individual contributions of space wave

and surface wave radiation and indicate the direction in

which surface wave power is propagating within the sub-

strate. Results presented show that, on high-density sub-

strates, high-frequency radiation loss is dominated by the
TM ~ surface wave. This mode is excited in the direction

of the longitudinal axis of the stub and bend discontinu-

ities shown, and may have a narrow beam width. A novel

experimental approach was used to verify these surface

wave patterns.

A specific example of a mitered bend was shown to

radiate less power than its right-angle counterpart. Such a

minor topology change had a significant influence on total

radiated power, without having a more significant impact

on either of the two types. This is reflected in an equal

percentage reduction in both space and surface wave

radiation. It is known, from published work on microstrip

antennas, that the substrate structure plays an important

role in surface wave radiation. Therefore, an element

showing improves loss performance on a single layer, such

as the mitered bend, will show further improvement when

printed on a multiple-layer substrate designed to have

lower substrate losses.

APPENDIX I

The components of the space domain Green’s function

are given by

GXX=GYY=–=
2z-k;

sinh ( uh)
~mJO(AP) ~l(A,h) .-’’OzAdA (Z>O)

Gzx = cot ( @) G=,

— —
*(l-~r)COs~~mJ1(Ap).-uoz

o

sinh ( uh) cosh ( uh)

f,(A, h) fJA>k)
A2dA (Z>O)

Gxx = Gyy

sinhu(z + h)
——

‘%~”JO(Ad fl~A,h) ‘dA (z<o)

Gzx = cot (+) G=,

sinh(uh) cosh U(Z + h)

fl(A, h) f2(A, h) “dA
(Z< O) (Al)

4withp= (x–x’)’+ (y–y ’) ’,uo=~~, andul=

r A’ – k? The equations ~l(A, h) and f2(A, h) represent

characteristic equations for surface wave modes given by

~l(A, h) = uosinh(uh) + ucosh(uh) (A2)

f2(A, h) = e,uocosh(uh) + usinh(uh) (A3)

where Cr is the relative dielectric constant and h is the

thickness of the substrate.

These components of the Green’s function may also be
represented as infinite integrations through the relation-

ships

.To(Ap) = : [~j’)(Ap) + ~~2J(AP)]

.ll(Ap) = : [~$’J(Ap) + @2)(AP)]

A4)

A5)

(A6)H~2)(Ap) = – H$)( – Ap)

(A7)Hf)(Ap) = H:l)( – Ap)

which result in the expressions in the free-space region
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(2>0): , mations,

Gzx = cot ~GZY

. -- %(1 - c,) cos ~~”H[’)(Ap)e-uoz
o —m

sinh ( uh ) cosh ( uh)

fl(A>~)f2(A,~)
A2dA .

(A14)

r

2 j je -jrk, sins

~~o(rko sin(d) sin(a)) = ~ ~sin(a) sin(~)

(A8)
(A:15)

resulting, in the final expressions

APPENDIX II

/–/

j~po 2j cc j~(a)
To find the far-field patterns above the dielectric, the G.. = Gyy= – ~ — — ~–Jkorcos(O–a) da

components of the Green’s function are more appropri-
mko -~ fl(~)

ately given in spherical coordinates according to (A16)

p=rsin8

z=rcostl.

(A9)
jupo

(A1O) GZX = cot @Gzy = – ~
r

~ (l-er)cos(#J)
~rko

After substitution of (A9) and (A1O) into (A8), the form

of the Green’s function becomes
“/

m qa)e-jkorcos(o-a)

-m fl(~)f2(a) ‘a
(A’17)

&~/~mHf’)(rkOsin(e)sin(a))GXX=GYY=–3
o with

.e–jkorcos(0)cos(a)

“k~cos(a)sin(a)da

sin(a) cos(a)
F(a) = sin (kOh~~) (A”18)

sin(e) sin(a)

kOsin(a)2cos(a)
G(a)=– sin(kOh~~)

sin(f3) sin(a)

Gzx = cot ~GzY = – *(1-% )COS(4)
o

cos (kOh~e, –sin2 (a) ). (A19)

J:m~fl)(rkosin( ~)sin(~))e-’k”rcOs(’)cOs(a)
The contour is deformed into the steepest descent path

as described in the main text with the saddle point being

the observation angle (a= fl). The contribution from the

(
j sin koh~~ ) cos (koh~~ ) saddle point is of the form

fl(~)f2(~) j~po e(-J~@) F(O)

.k~ cos(a) sin2 (a) da
GXX=— —

(All) 2T koR fl(/3, h)

where the surface wave characteristic equations become . #ko[x’sin(0)cos(4 )+y ’sin(@) sin(4)l) (A20)

f,(a) = - kocos(a)sin(koh~~) ~(–jkO10

GZX = – A(l-e,)cos(4)—
jG(9)

kOR fl(O, h) f2(0, h~
+ jko~cr –sin2(a) cos (koh~~) (L412)

for TE surface waves and
. ~(j~O[x’sin(0)COs(@)+Y’Sin(@)Sin(+)l) (A21)

f,(a) = - ko~~sin(kd~~)
These expressions give the far-field patterns above the

substrate (s~ace wave ~atterns). They are spherical waves

as seen by ~heir spatial dependence e( ‘JkOR)\ koR. In the
+ jko~, cos(a) cos(koh~~) (A13) phase terms of the above expressions

for TM surface waves. Far-field patterns (rko >> 1) are R=r+(x’sin(0) cos(@)+ y’sin(0) sin(@)),
desired. Under this condition, the Hankel functions may

be replaced by their respective large argument approxi- and the amplitude terms 1/r -have been replaced by l/R.
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APPENDIX III

This appendix deals with surface wave fields resulting

from application of Cauchy’s theorem. For the TM case,

/

k~wpo 2j
EZ=—

2
— cos(~)
~pkO

[~
.sin k. E, — Coshz(v ) ~] ~–j~o~cosh(u.)e–~o:slnh(p.)

NTM

“E
A –cosh2 ( v.)

n=o x

(z> o) (A22)

cosh ( v.) sinh ( v.)

[~~(a,h)]17r/2+jun

[~.sin k. ~r — Coshz(v ) ~] e–j~o~cosh(~.)e –~o:slnh(u.)

(Z> O) ‘(A23)

r

k~upO 2j
EZ=—

2
— Cos(+)
~pkO

NT~ ~oshz ( ~,,) sinh’ ( r“~) e –jkop cosh(v~)

“z
~=, -

. cos[k,~~(~+ h)]

[f:(~,~)]lm,,+,vn

(Z< O) (A24)

je,k~

r

2j
H$=– —

2
— cos(~)
rrpko

IVTM Cosh ( Vn) sinh2 ( r-’~) _ k Cosh(vm)

“z
~=, w ‘JOp

[J
COS k. e, –cosh2(v~) (z+h)]

[f;(~, ~)]lT/2+,.n

(2<0). (A25)

And for the TE case,

r

k; 2j
Hz=y — sin(~)

~pko

“?
cosh’ ( Vn) sinh ( v~)

~=, Z[fl(a,h)ll./2+j.m

[J.sin kO cr —coshz (v~) h] e–Jk@COSh(v~)

. ~–ko:surh(um)

(Z> O) (A26)

k;wpO

r

2j
E+=—

2
— sin(~)
n-pkO

“? cosh ( v~) sinh ( Vm)

~=o @=mK~wlk2+wm

[4. sin k. Cr —cosh2 (v~) h] e–jkopcoshc~rn)

. ~–ko:sinh(um)

(z> o) (A27)

r

k; 2j
HZ=Y — sin(~)

m-pkO

NTE

“z
cosh2 ( Vn) sinh ( Vm)

rn=o @=zJfK%w,2+,%

~–]kopcosh(UJ

(Z< O) (A28)

k~(opo

/

2j
E4=—

2
— sin(d)
trpkO

NTE

“z
cosh ( v~) sinh ( v~ )

~=o S[fi(ah)ll./2+@m
~‘JkopCosh(um)

sin[ko~~(~+~)]

(Z< O). (A29)
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