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Abstract —Radiation properties of open microstrip discontinu-
ities are investigated using a full-wave integral equation tech-
nique. The method of moments provides the current distribution
over the discontinuity which is used to determine radiation loss.
The radiation loss for microstrip bends and stubs is separated
into the individual contributions of space and surface wave
excitation. Patterns depicting the power propagating in the
substrate have been computed and verified experimentally.

1. INTRODUCTION

XTENSIVE literature has appeared in recent years

on the modeling of microstrip discontinuities. At
present, models based on static microstrip characteristics
(quasi-static models) [1]-[5], dispersion models [6]-[9],
and semiempirical results [10] are utilized extensively in
commercially available CAD packages. Although ade-
quate at lower frequencies, these models neglect high-
frequency electromagnetic interactions and, as a result,
may provide inaccurate and even misleading results at
submillimeter-wave frequencies. In contrast, full electro-
magnetic or full-wave techniques [11]-[18] have demon-
strated excellent performance in this frequency range
owing to the inherent inclusion of these effects. In partic-
ular, radiation loss attributed to the excitation of space
and surface wave modes has been reported for the open
microstrip elements [19], [20] often found in the feeding
structures of planar arrays.

In previous work, open microstrip structures were ana-
lyzed with the method of moments. Circuit elements were
characterized by their network parameters which included
total radiation loss. No effort was made to separate this
loss into the individual contributions of space and surface
waves. Space waves refer to the modes radiated into the
semi-infinite region above the dielectric; surface waves
are modes bound in the substrate, which forms a grounded
dielectric waveguide. In this paper, more specific informa-
tion about the types and quantity of radiation occurring is
presented. These results will provide guidelines for the
development of low-loss microstrip elements. For exam-
ple, it is well known that the shape of discontinuities can
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be altered to improve circuit performance (e.g. mitered
bend, radial stub). However, finding the influence of
these and similar modifications on the radiation loss is
also important. The technique presented is capable of
providing the necessary quantitative results for determin-
ing if and why a specific circuit modification decreases
radiation loss.

Results will be presented that quantify the radiation
occurring from each mechanism and illustrate the direc-
tions of propagation of surface wave radiation. These
far-field patterns are useful in determining where cou-
pling through surface wave excitation may be strong. In
addition, results will be shown demonstrating the strong
influence that substrate composition has on radiation
properties.

The far-field patterns are obtained in this paper by the
complex transformation of the space-domain Green’s
function to the steepest descent plane, where a saddle
point integration is performed. The contribution from the
saddle point represents far-field spherical wave power in
the half-space above the dielectric. In addition, residues
corresponding to the poles captured in the contour defor-
mation represent cylindrical surface waves. Theoretical
and experimental results are presented for microstrip
stubs and bends that detail the effect of radiation on
circuit performance, quantify the types of radiation which
are occurring, and show the direction and intensity of
surface wave propagation in the substrate.

II. THEORY
A. Computation of Current Distribution

A cross section of the microstrip structure is shown in
Fig. 1. The conductors are lossless and their thickness is
much smaller than a wavelength. The lossless substrate
has thickness %. The electric field may be written in terms
of the space domain integral equation

E(x,y,z)=/[y[k,2f+vv]

-E(x,y,z/x’,y’,z’)-J(s’)ds’, i=0,1 (1)

with &k, and k, being the wavenumbers in free space and
the dielectric regions, respectively, and

J(s) =T (%, y) R+ T (x',3") 9 (2)
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Fig. 1.

Open microstrip geometry.

is the current on the conducting strips. The components
of the dyadic Green’s function

E(xa y,z/x’, y',z’) =Gxx'£‘f +sz2£ + ny))))/; +GZ)’2)};
(3)

are represented in the form of Sommerfeld integrals [21],
and are given to Appendix L.

The microstrip discontinuity is subdivided into rectan-
gles, and the method of moments [22] is applied with
rooftop basis functions [23]. These basis functions are
consistent with the current boundary conditions, having
piecewise-sinusoidal variation in the longitudinal direc-
tion and constant variation in the transverse direction.

With the application of Galerkin’s method, the integral
equation is reduced to a matrix eéquation

[z][1]=[V]

where Z represents the impedance matrix, [ is the vector
of unknown x and y current amplitudes, and V is the
excitation vector which reflects the position of the source.
The matrix equation is solved providing the current am-
plitudes on the discontinuity and the feeding lines. The
microstrip structure is excited by infinitesimal gap genera-

tors. More details on the excitation and application of the.

method of moments may be obtained in [18].

B. Far-Field Radiation

The electromagnetic fields generated by the current on
the microstrip element may be computed directly from
the electric field integral equation after the microstrip
current is known. This is done by a numerical integration
of (1) after the current summations have been inserted.
Performing this integration for the radiated fields at all
spatial angles would be extremely time consuming but
fortunately is not necessary. To quantify the space and

surface wave power losses, it is necessary only to obtain

, the far-field patterns. These may be obtained by an ap-
proximate saddle point integration, which is much less
time consuming than a full numerical integration of (1).
Of course, to compute the near fields a numerical integra-
tion would be required. In this section, the saddle point
evaluation for the far fields is presented. As shown in Fig.
2(a), the original path of integration was along the posi-
tive real axis. Along this path, a finite number of singular-
ities corresponding to excited surface waves are encoun-
tered between the free space (ko) and the dielectric (k)
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Integration paths: (a) integration along real axis in A plane;

Fig. 2.
; (b). contour of integration in the « plane.

wavenumbers. To obtain the radiated far fields, the inte-
gral is transformed to the steepest descent plane by the
complex mapping

A=kysina.

(4)

Fig. 2(b) shows the new path of integration in the «
plane. The quantities shown in parentheses correspond to
the points mapped from the A plane to the « plane. The
poles now lie along the line defined by Re(a)=17 /2,
between the points Im(a) =0 and Im(a) = v,. The point
v, is'mapped from the point k in the A plane and has the
value

v, =cosh™!(e,).

(%)

Consistent with the far-field approximation, asymptotic
approximations are made for the Hankel functions as
shown in Appendix II. The contour of integration (Fig.
2(b)) is then deformed into the steepest descent path [24],
[26]. A saddle point integration is performed, with the
saddle point equal to the spherical observation angle
(« = 8). During the contour deformation, a finite number
of simple pole singularities are captured as shown. These
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represent power in the excited surface wave modes and
will be discussed in the following section. However, it
should be noted that at the cutoff of higher order surface
wave modes the pole locations are in close proximity to
the saddle point when the observation angle is along the
substrate (8 = w /2). Consequently, a saddle point analy-
sis in proximity to a simple pole singularity should be
performed near cutoff frequencies of higher order modes.
As the operating frequency moves away from cutoff, the
surface wave pole moves away from the saddle point.

To obtain the ficlds for a microstrip discontinuity, one
returns to the electric field integral equation. In the far
field, the electric field can be written in spherical coordi-
nates as

Ey= kgl my + 73] (6)
Ey= ki + )] (7)
with
w5 = [ [ [G1rc05(0) c05() = Giysin (0)]
T (x',y") dx’ dy’
17§=//S,[nycos(0)sin(¢)—Gzy sin (6)]
T,(x',y') dx’ dy’
mi = [ [ [~ Guusin($)]Iu(x',y") dx'dy’
77'4{=//S/[nycos(¢)]Jy(x’,y’)dx’dy’. (8)

Inserting the results of the saddle point analysis (Ap-
pendix II) and the values of the microstrip current ob-
tained from the method of moments, the electric field can
be written in the form

Joupg
Bo=— ks

e(—]koR)

F(9)

JG(0)(1~-¢,)
. ————fl(ﬁ,h) cos(6)

W) Si“(‘”}
[A,.(6,p)cos(¢)+ A,,(0,6)sin(¢)]

(—jkgR)
,et R F(6)
* koR fi(8,h)

Jopg
E,=—
¢ 27

[4,,(0,8)sin(¢) = 4,,(6,) cos ()]

where the terms A,.(6,¢) and A,,(8,¢) contain the
spatial integrations of the basis functions with the Green
function’s phase terms. These integrations are performed
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analytically and result in the expressions given below:

Arx(g’d))

— 4e(jk0(1/2)sin(0)sm(¢))

N+1M+1
. Z Z Ix e(jymkosin(6)sm(d>))e(]xnk0sin(B)cos(qb))
nm

n=1m=1
l
sin(koz sin(6) sin(¢))
T kosin(8)sin( )

cos (lkysin(6) cos(d))—cos(k,l)

’ 2 ' (9
kssin(ksl)[l—(k—o) Sin2(0)cosz(¢)}

A

Ary(e’ d))

= 4okl /Dsin®)cos(4)

N+1M+1
LYY g2, evmkosin(@sin(@)g(aakosin(®)cos(4)

n=1m=1
l
sin (koi sin(9) COS(¢))
T kosin(0)cos (o)

cos (lkysin(8)sin($))—cos(k,l)

. - (10)
k,sin(k,l) {1— (k—o) sin2(9) sinz(qs)}

N

where the quantities / and k, represent the subsection
length and scaling constant for the basis functions, re-
spectively. More detailed information on the rooftop basis
functions is available in [18]. The fields depend on two
factors: a substrate contribution, resulting from the
Green’s function and containing all the information about
the substrate; and a shaping contribution, resulting from
the spatial dependence of the source and containing all
the information about the shape and current distribution
over the conducting strips. Consequently, these two fac-
tors may be handled independently to reduce loss.

The total far-field space wave power is obtained by
integrating the Poynting vector over a hemisphere cen-
tered around the discontinuity:

1
por = 5/027/07/2

C. Surface Waves

During the contour deformation of the previous sec-
tion, a finite number of singularities were captured, as
shown in Fig. 2. These singularities correspond to excited
surface wave modes that fall into two types: transverse

E |E,?
—+
Mo Mo

r?sin(0)dode. (11)




HAROKOPUS et al.: SURFACE WAVE EXCITATION

electric (TE,) and transverse magnetic (TM_) to the
dielectric—air interface. The poles are determined by the
zeros of two analytic functions present in the denomina-
tor of the Green’s function given by equations (A12) and
(A13).

It is now a simple matter to obtain field patterns in the
dielectric (6 = 7 /2) by the application of Cauchy’s residue
theorem. The total number of poles is determined by the
operating frequency and the substrate parameters. The
pole locations are given by

T

aTM=—2~+jvn, n=1,Niu (12)
o

aTE=E+jV'"’ m=1,Ng (13)

where Ny and Npp are the number of excited TM and
TE modes, respectively. The far fields are determined by
computing the residues of the singularities and are given
in Appendix III.

The power in a particular mode is found from the
Poynting vector. The surface wave power at the dielectric
interface (Z =0) is given by

Nrw k4w,u
PM(g)= L ——
n=0 wp
[€, — cosh? (#,)] cosh? (»,) sinh? (v,)
[ F3(e)n 2, ]

-sin? {koh €, —cosh* (v,) ]

‘leos (¢) A,.($) +sin($) 4,,(6)I
for TM waves and by

(14)

PTE(4) NZTE kiou, cosh? (v,,) sinh? (,,)
moo 470 [ fi(@)]rj2em, ]

-sin? [koh\/m]

Isin(¢) A4,.(¢) +cos(d) A, () (15)

for TE waves. In (14) and (15) the terms A,(¢) and
A, (¢) are given by (9) and (10), with the quantity
kg cosh(v,) replacing & sin(8).

The total power in the TM and TE modes may be
found by integrating the Poynting vector over a cylindrical
surface centered at the discontinuity

pI™ _ _ f_wh fozw E2 Hy

pdddz (16)

(17)

III. REesuLTs

In this section, examples will be presented that quantify
the radiation loss for microstrip open-end, radial stub,
and bend discontinuities. Additionally, surface wave far-
field patterns will be shown for these structures. As
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Fig. 3. Radiation loss of open-end stub (e, =12, A= 0.635 mm, W =
0.254 mm).

mentioned, the surface wave patterns are useful for deter-
mining directions of strong coupling between adjacent
discontinuities. Space wave far-field patterns have a null
along the dielectric substrate, except under rare circum-
stances (at the cutoff of higher order surface wave modes)
which are not applicable to the presented results. Fur-
thermore, surface wave radiation is in the form of cylin-
drical waves which decay less rapidly with distance than

. spherical space waves. It is therefore reasonable to con-

clude that surface waves play a major role in undesirable
electromagnetic interference. In addition, the extraction
of the exact amount of both types of radiation will help in
the design of low-loss elements and extend the use of
microstrip circuitry farther into the millimeter-wave re-
gion. The first of the following sections will give examples
of total surface and space wave losses; the second section
includes examples which depict the direction of surface
wave propagation.

A. Space and Surface Wave Radiation Losses

1) Stubs: In Fig. 3, the contribution of space and sur-
face waves to total radiation loss is given for an open-
ended stub. In the lower frequency range, the space wave
contribution is slightly larger. However, the surface wave
loss increases sharply with frequency, overtaking the space
wave power at 19.5 GHz. Beyond this frequency, the total
radiation loss increases sharply owing to a corresponding
increase in surface wave loss. The TE, mode activates
between 35 and 36 GHz, therefore, only one surface wave
mode is excited in this example. The total radiation loss
approaches half of the input power at 34 GHz, which is a
significant amount of loss for an element on a substrate
with practical electrical dimensions for (M)MIC applica-
tions.

The radial stub is generally utilized for its greater
bandwidth. Radiation loss for such a structure is shown in
Fig. 4, and exhibits behavior similar to that of the open-
ended stub, except that the sharp increase in surface wave
and total radiated power is shifted upward. This behavior
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Fig. 5. Percentage of surface wave loss (P, = Py, + Py,) from open-
ended and radial stubs (e, =12, = 0.635 mm, W = 0.254 mm).

results in less radiation loss in the 20-30 GHz range of
operation. In both of the above examples, the radiation
loss will continue to increase until the first higher order
mode is excited, and then it will oscillate as reported in
[25]. Although the shape of the metallization has a strong
influence on the total loss, it does not appear to have a
greater influence on either of the two types of lower
frequencies, as shown in Fig. 5. However, above 30 GHz
the radial stub radiates a higher percentage of power into
the excited surface wave mode.

2) Mitered Bend: Chamfering of microstrip bends is a
common practice for the reduction of input VSWR. The
example shown in Fig. 6 clearly illustrates that mitering
can result in lower radiation loss as well. The losses
between the mitred and right-angle bend are effectively
equal until 20 GHz (k= 0.127A,). Beyond this frequency,
the right-angle bend clearly radiates more power. Fig. 6
also shows that, once again, the radiation is dominated by
surface waves at high frequencies. However, the mitering
produces a reduction in both space and surface wave
power as illustrated in Fig. 7, where both the mitered and
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Fig. 6. Radiation loss of mitered bend (e, =12, A= 0.635 mm, W =

0.381 mm).
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Fig. 7. Percentage of surface wave loss (P, = P,,, + P,;) from mitered
and right-angle bends (e, = 12, / = 0.635 mm, W = 0.381 mm).

unmitered cases exhibit identical percentages of surface
wave loss. Mitering effectively increases the useful range
of operation of the bend element by decreasing the radia-
tion loss. A similar discontinuity printed on a substrate of
lower permittivity would exhibit lower, but still significant,
surface wave losses.

B. Surface Wave Patterns

The preceding analysis was utilized to obtain patterns
in the substrate for the TM, surface wave mode. As
previously mentioned, this mode is excited at any operat-
ing frequency. Accordingly, it is important to know its
direction and the amount of power propagating. Theoreti-
cal and experimental patterns were obtained at 10 GHz
for microstrip stub and bend discontinuities printed on a
96 mil (2.44 mm) Duroid (e, = 2.3) substrate. The Duroid
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Fig. 8. Microstrip radial stub printed on Duroid substrate (e, =23,
h =244 mm, W=2.54 mm).

Fig. 9. Experimental setup for surface wave pattern measurements
(e, =23, h =244 mm, W = 2.54 mm).

substrates were machined into 5-in.-diameter circular sec-
tions,; shown in Fig. 8, with the substrate edges gradually
tapered to minimize the reflection of the surface wave at
the edge of the substrate. The microstrip element, in this
case a radial stub, was etched from the copper metalliza-
tion on the top face of the substrate. The experimental
setup is shown in Fig. 9. The substrates were élevated
onto a rotating pedestal and surrounded by absorber to
minimize multiple reflections. Each element was fed at
the edge of the substrate with a 10 GHz signal and a
resonant dipole was positioned near the edge to measure

the pattern. The distance from the launcher to the discon--

tinuity is 50 mm. The pedestal was then rotated to alter
the observation angle (¢). Absorber was placed over the
microstrip launcher to minimize extraneous radiation. A
similar technique was employed to measure surface wave
fields of coplanar waveguide discontinuities in [28].

1) Open-Ended and Radial Stub: The experimental re-
sults for a 100 Q (W = 2.54 mm) open-ended line were
compared with the theoretical results derived by the pre-
viously presented method. Fig 10 shows that the theoreti-
cal results agree well with the experimental results. The
open-ended line radiates power in the TM, surface wave
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Fig. 11. Surface wave pattern of radial stub (e, =23, h=2.44 mm,

W =2.54 mm, r =10.16 mm, 8 = 90°).

along the longitudinal axis of the line. The experimental
and theoretical results include the effect of finite feed
line length, as demonstrated by the side lobes in the
pattern.

The TM,, surface wave pattern of the previously shown
radial stub was also measured. The 10.16 mm radial
portion swept out an angle of 90° and was fed by a 100 Q
microstrip line. As mentioned, radial stubs are useful as
broader band elements in (M)MIC design. Fig. 11 shows
the excellent agreement between theoretical -and experi-
mental results. The results are very similar to those ob-
tained for the open-ended line, with the surface wave
power excited along the longitudinal axis. However, de-
spite having a larger aperture, the radial stub has a wider
beam width than the open-ended line. This occurs be-
cause a <quadratic phase is present along the aperture,
which also results in the filling of the nulls shown by both
the theory and experiment. ;

The theoretical pattern of a radial stub which is fed by
a semi-infinite length of feed line is'also shown. As can be
seen, the side lobes are no longer present and the beam
width was widened. ' ’

2) Bend Discontinuity: A two-port right-angle bend dis-
continuity, shown in Fig. 12, was fabricated and mea-
sured. Experimentally, port 2 was left open ended at 50
mm (= 2X,) from the bend discontinuity. The theoretical
model assumed a semi-infinite feed line (shown as direc-
tion ¢ = 0 in picture), and assumed that the second port
was left open ended but extended far from the discontinu-
ity. This extension maintains the standing wave ratio on
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Fig. 12. Surface wave pattern of right-angle bend (e,=23, h=
2.44 mm, W = 2.54 mm).

the line but removes the radiation from the open, thereby
isolating the radiation pattern of the bend. As shown in
Fig. 12, the agreement between theory and experiment is
good. The experimental results show the combined effects
of finite feed line length and the radiation from the open
end. This results in the discrepancy between the theory
and experiment around 45°. Since the experiment was
designed to measure the bend pattern, the open-end
discontinuity was positioned at the edge of the substrate
in the experimental model to minimize its effects, and
could not be accurately incorporated into the theoretical
computation. The side lobe present at about 90° in both
the theoretical and experimental results comes from the
power reflected at the open end which returns to the
bend and radiates there. This lobe would be smaller if the
second port were matched.

IV. ConcLusion

Formulas have been presented to characterize power
loss from open microstrip discontinuities. The technique
utilizes microstrip current distributions obtained with the
method of moments. The formulas allow the separation of
total loss into the individual contributions of space wave
and surface wave radiation and indicate the direction in
which surface wave power is propagating within the sub-
strate. Results presented show that, on high-density sub-
strates, high-frequency radiation loss is dominated by the
TM,, surface wave. This mode is excited in the direction
of the longitudinal axis of the stub and bend discontinu-
ities shown, and may have a narrow beam width. A novel
experimental approach was used to verify these surface
wave patterns.

A specific example of a mitered bend was shown to
radiate less power than its right-angle counterpart. Such a
minor topology change had a significant influence on total
radiated power, without having a more significant impact
on either of the two types. This is reflected in an equal
percentage reduction in both space and surface wave
radiation. It is known, from published work on microstrip
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antennas, that the substrate structure plays an important
role in surface wave radiation. Therefore, an element
showing improves loss performance on a single layer, such
as the mitered bend, will show further improvement when
printed on a multiple-layer substrate designed to have
lower substrate losses.

APPENDIX 1

The components of the space domain Green’s function
are given by

Jou,
O =0 =" 22
fm (ap) SR - rgep g (Z>0)
. P
’ fi(Ash)
G,,=cot(¢)G,,
_Jou “
= koz(l——e,)cos¢/(; Ji(Ap)e *o?
sinh (uh) cosh (uh)
: A dA Z>0
AL AR ) (229
G, =G,,
Jjopy sinhu(z + h)
= WLJO(AP)WACI/\ (Z<0)
G.,=cot($)G.,
J Ko o
kz(l € )cosq‘;fo Ji(Ap)
sinh (uh)coshu(z + h
- (uh) ( )Asz (Z<0) (AD

Fi(Ah) fr(A h)
withp=\/(x—x’)2+(y—y’)2,u0= M —kZ,and u, =
VA° — ki . The equations f(A,n) and f,(A,h) represent
characteristic equations for surface wave modes given by

fi(A, h) = ugysinh (uh) + u cosh (uh) (A2)

[2(A, h) =e€,ugcosh (uh) +usinh(uh)  (A3)

where €, is the relative dielectric constant and 4 is the
thickness of the substrate.

These components of the Green’s function may also be

represented as infinite integrations through the relation-
ships

Jo(Ap) = %[Ho(l)(/\l)) +HP(ap)]  (A4)

1
T(rp) =5 [Hfl)(/\P) +HP(Ap)]  (AS)
HP(Ap) = — HO(~ 1p) (A6)
H{®(Ap) = H{’(— Ap) (A7)

which result in the expressions in the free-space region
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(z>0) \
Gy =G,,=— i’;i/ H(l)()tp)e_“oz—s—;%l(l-lx(-b—%l AdA
sz=cot¢G
= i l;:;(1—6,)COS¢/_°;H1(1)()\p)e—”OZ
. sinh (uh) cosh (uh) 2di (AS)

fi(A,h) f2(As h)

AprPENDIX II

To find the far-field patterns above the dielectric, the
components of the Green’s function are more appropri-
ately given in spherical coordinates according to

p=rsind (A9)
(A10)

After substitution of (A9) and (A10) into (A8), the form
of the Green’s function becomes

z=rcosf.

Jopg
47Tk2

f H{(rkysin(8)sin(a))
. e“jkorcos(e)cos(a)
jsin(kohy/e, —sin® () )
fi(a)
ki cos(a)sin(a) da

J Mo
k2

G,,=cot¢G,, = (1-¢,)cos(¢)

oc
: f H®(rk,sin(0)sin(a))e Torcos®eost@
—

Vjsin(koh\/e, —sin®(a) )cos(koh €, —sin’ (a) )
fi(a)fo(a)
-k cos(a)sin’(a) da

(All)
where the surface wave characteristic equations become
fi(a) = —kycos(a)sin (koh €, —sin® (a) )
+ jkoye, —sin®(a) cos(kohy/e, —sin* () ) (A12)
for TE surface waves and
fa(@) = — koy/e, —sin® () sin(kohy/e, —sin® (a) )
+ jkge, cos (@) cos (koh €, —sin’ (a) ) (A13)

for TM surface waves. Far-field patterns (rk,>> 1) are
desired. Under this condition, the Hankel functions may
be replaced by their respective large argument approxi-
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mations,

2] e_f"k() sin(@)sin(a)

mrky /sin(a)sin(6)

H{P(rkysin(6)sin(a)) =

(A14)
27 e—jrko sin(@)sin(«)
H®(rk,sin(0)sin(a)) = ’ ] -
mrky y/sin(a)sin(6)
(Al5)

resulting in the final expressions

G,.=G, Jw,U«o — f°° ]f}:((:l‘)) ~skor cos (0=a) 1
(Al6)
G,, =cot¢G,, = S batal: (1—¢,)cos(o)
4ar 7Trk
[ G e (aw)
—»  file)fy(e)

Fla) = sin{a) cos(a)
() = Jen (o) ()

kosin(a)’cos(a)

\/sm(G) sin( «)
-cos(koh\/e, —sin*(a) )

The contour is deformed into the steepest descent path
as described in the main text with the saddle point being
the observation angle (a = 6). The contribution from the
saddle point is of the form

sin (kyhy/e, —sin’ (a) | (A18)

G(a)=

(k hye, —sin (a))

(AL9)

Jou, e(TIkeR) F(0)

G, . =
oo 2m kgR fi(8,h)
. pUkolx'sin(8) cos (¢) +'sin (8)sin ($)] (A20)
(~ikoR) i
jou e jG(0
Gep= =5 (1= €)cos(9) 2

koR  fi(8,h)f5(0,h)
. pUKGL¥'sin(8)cos () +y'sin(@)sin(P)) (A21)

These expressions give the far-field patterns above the
substrate (space wave patterns). They are spherical waves
as seen by their spatial dependence e(=7%o® /k R. In the
phase terms of the above expressions

R=r+(x'sin(6)cos(¢)+ y'sin(8)sin(e)),

and the amplitude terms 1/r have been replaced by 1,/R.
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AppeNDIX 111

This appendix deals with surface wave fields resulting
from application of Cauchy’s theorem. For the TM case,

k2w 2j
E - @My

“ 2 mpk,

cos(¢)

Nrw \/e,—coshz(vn) cosh? (v,) sinh (v,)

ngo VCOShVn [f{(a7h’)]|7T/2+jvn
sin[ kyy/e, —cosh? (1) h] e /kup o —koznh)

(Z>0) (A22)
K2
H¢=—? — cos(¢)
NZT:M Ve, —cosh?(v,) cosh(v,)sinh(v,)
o0 ycoshy, [fﬁ(a,h)]|w/2+jun
‘Sil’l [kO €, — COShZ (Vn) h] e—jkopcosh(vn)e—koz sih(v,)
(Z2>0) (A23)
E =10
=T o ()

Nv cosh? (v,) sinh? (v,)
ycoshy, ¢
cos [ko\/e, —cosh?(v,) (z + h)]

[ 2@, m)]lmj2m,

je,kS 27
H =
s ) V e cos(¢)
Nrv cosh (v,) sinh? (v,

. ,E‘O ycoshv,
cos [ko\/e, —cosh?(v,) (z + h)]

[fé(aah)“ﬁﬂﬂvn

—jkgp cosh(v,)

n=0

(Z<0) (A24)

) e —Jkgpcosh(v,)

(Z<0). (A25)

And for the TE case,
kg 2j

H.
-2 mpk,

sin(¢)

AEE cosh? (v,,) sinh (v,,)
m=20 VCOSh Vi [f{(a7h)]!‘ﬂ'/2+jvm

-sin [ko e, —cosh’ (v,,) h] e ~/kop cosh )

-e —kgzsmh(v,,)

(Z>0) (A26)

kiow, 2j
o atal) .
P > — sin(¢)
Nre cosh(v,,)sinh(v,,)

.EO veosh,, [ fi(a,m)]ls 25,
-sin [ko €, —cosh? (Vm) h] e~1k0pcosh(vm)

—kgzsinh(v,,)

‘e
(2>0) (A27)
K2
Hf;\/lsm(‘b)
Nre coshz(vm)sinh(vm) 1k op cosh ()
—JKgp coshr(v,,

. mg() veoshw, [ fi(a,m)]ln 24,
-sin[kom(z + h)]

(Z<0) (A28)

kiow, 2j
E,=—22 i
=Y o S (9)

Nrg 1

Y cosh(v,,)sinh(v,,) o sqp cosho)
m=0 VCOSth [f{(a’h)“‘rf/z'*ﬁ/m

-sin [ko\/fr —cosh?(v,,) (z + h)]

(Z<0). (A29)
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